OUTPUT-ONLY モード・データを使用した損傷探知に関する研究

- Mehdi H.K. Kharrazi⁽¹⁾,
 Carlos E.Ventura⁽²⁾
 (1) Graduate Student,
 (2) Professor, Department of Civil Engineering, University of British Columbia 2324 Main Mall, Vancouver, BC, V6T 2E7, Canada (1)kharrazi@civil.ubc.ca
 (2)ventura@civil.ubc.ca
- Rune Brincker⁽³⁾
 (3) Associate Professor, Aalborg University, Department of Building Technology and Structural Engineering
 Sohngaardsholmsvej 57, DK-9000
 Aalborg, Denmark <u>i6rb@civil.auc.dk</u>

Eddy Dascotte⁽⁴⁾

(4) Dynamic Design Solutions n.v. Interleuvenlaan 64, B-3001, Leuven, Belgium Eddy.dascotte@femtools.com

要旨

本稿は、ASCE Structural Health Monitoring Task Group⁺¹の活動の第2 段階において行われた振動研究の結果に ついて説明したものである。これらの活動は実験データに対する損傷探知手法の適用に焦点が当てられてい る。また、本稿は振動研究から得られたoutput-only(出力のみの)データを使用した損傷探知についても焦点 が当てられている。試験体として、ブリティッシュコロンビア大学において4 階建のスチール・フレームの 1/3モデルが使用された。損傷のさまざまなレベルについて、このフレームに対する強制振動と周囲振動 の一連の試験が行われた。損傷は構造物の部材を除去することによってシミュレートされた。固有振動数と それに関連するモード・シェープは、周波数領域と時間領域の手法を使って各損傷ケースに対して決定され た。構造物の有限要素モデルは、各損傷ケースの振動測定データから得られたoutput-only モデル同定手法に よる結果を用いてアップデートされた。最後に、有限要素モデル・ベンチマークのモデル・アップデーティ ング・プロセスの結果得られた要素特性の変化から、損傷が決定された。

†1より詳細な情報は(http://wusceel.cive.wustl.edu/asce.shm/EMD2000.htm)を参照のこと。

緒言

過去数十年間にわたり、構造物の動特性の変化に基づく非破壊評価(Non-destructive Damage Evaluation: NDE) の分野において非常に多くの研究が行われてきた。今日までに開発されたこれらNDE の方法の各々は、それ らのパフォーマンスや応用分野にしたがって異なるレベルに分類できる。本稿は、このNDEレベルの一つの 応用(実験データに適用される非破壊損傷探知手法)に焦点を当てる。この研究は、ASCE Structural Health Monitoring Task Groupの活動の第2段階の一部である。実験データを作り出すために、試験体としてブリティ ッシュコロンビア大学において4階建のスチール・フレームの縮尺1/3のモデルが使用された。損傷のさ まざまなレベルについて、このフレームに対する強制振動と周囲振動の一連の試験が、2000年7月19~21日 に行われた。進行する損傷は、構造物からブレーシングを除去し、接合を緩めることによってシミュレート された。強制振動については、最上階で構造物を加振するために電磁シェーカーが使用された。 構造物全体にわたって配置された加速度計は、構造物の応答を測定するために使用された。周囲振動につい ては、シェーカーを停止し、数分間構造物の周囲振動が記録された。実験モデルと解析モデルの間の自動相 関分析を実行するために周囲振動試験のデータを使った非破壊損傷探知に関する研究結果が本稿に示されて いる。「非損傷」構造物のFE モデルが、非損傷モデルの周囲振動試験の結果を用いてアップデートされた。 それから、「損傷」ケースの各々のモード同定の結果が、非損傷構造物のアップデートされたFEモデルを 用いて相関分析を行うために使用された。相関の検討に使用される選択されたパラメータの感度が評価され、 最も高い感度を示すそれらのパラメータが、引き起こされた損傷による構造物の変化に関連していることが 分かった。検討された5つの異なる損傷ケースのうち、4つのケースがうまく予測できた。うまく同定され なかったケースについては、引き起こされた損傷が、構造物のモード特性において顕著な変化を引き起こす のに十分大きなものではなく、感度解析が損傷の存在の信頼できる同定を与えることができなかったことが 判明した。

フレーム・モデルの説明

この研究に使用された試験フレームは、4階建、2間口×2間口のスチール製のフレームで、ブリティッシュコロンビア大学の振動工学研究室に建設された(図1)。モデルのおよその寸法は、高さ3.6m、幅2.5mである。各階は高さ0.9mで、各間口は幅1.25mである。フレームに関する詳細は、Black and Ventura(参考文献[1], 1998)を参照のこと。

スチール・フレームの1,2,3階に与える荷重は、各々およそ17.8 kN、屋根レベル(4階)にはおよそ13.4 kNと選定された。この一様でない分布荷重をシミュレートするために、数枚のスチール板要素が各階の各間 ロに設置された。スチール板の寸法は最初の3つの階については1.5×0.65×0.06 mであり、屋根レベルについ ては1.5×0.65×0.45 m である。屋根レベルに据え付けられた電磁シェーカーの重量は、およそ2 kNであった。

振動試験

固有振動数やモード・シェープのようなスチール・フレームの振動特性を決定するために、周囲振動と強制 振動の試験方法が適用された。強制振動試験と違って、周囲振動試験では構造物に働く力を制御することは できません。我々の場合は、加速度の測定はすべての関心のあるモードが十分に励起されることを確かめる ために、長時間にわたってデータが取られた。

強制振動試験は、単純に屋根レベルに据え付けられた電磁シェーカーによって励起される小さな振幅の振動 から成る。シェーカーはLing Dynamic System 450シリーズ振動発生器で、Ling Power増幅器(PA-1000)に接続 された。シェーカー試験に関する詳細は、Kharrazi(参考文献[2], 2001)を参照のこと。試験用に選ばれたシ ェーキング・レベルは、シェーカーの最大出力のフルと1/2であった。デジタル波発生器(3525 デュアル・ チャンネルFFTアナライザ)は、0.1~50 Hzの周波数帯域のランダム振動(ホワイト・ノイズ)を発生させた。 発生したホワイト・ノイズ信号に対するスペクトルは、約0.1~1 Hzの間で、比較的小さい傾斜で上昇した。 電磁シェーカーは、屋根のスチール板の上に、フレームの主方向と45° ずらして据え付けられた。フレーム に引き起こされた力を捉えるために、シェーカーの加速度と変位が記録された。記録されたデータに基づい て、振動発生器は約5.0 gの最大加速度を発生させ、最大出力フル設定に対する最大力は約200 Nであった。同 じ重量で2.25gの最大加速度を作り出し、1/2出力設定に対する最大力は約90 Nであった。

図1 スチール・フレーム・モデル: FEM ワイヤフレーム・モデル(左)、実際に試験に用いられた装置(右)

3つの異なる振動測定システムが、このプロジェクトのために使用された。これらは、参考文献[2]にすべて 説明されている。スチール・フレームについて行われた試験に対して、各データ・セットは6分間集録された。 システムの一つが1 秒当り2000サンプルのサンプリング・レートでデータを集録し、保存の目的で250 sps に 縮小された。14個の加速度計が周囲振動の測定のために使用された。固有振動数とモード・シェープをうま く捉えるために、セットアップは1 回だけ必要であった。測定データは屋根から始まり1階まで、各階で3 つの場所で取られた。最後に、ベース・レベルの一つの場所で、3方向すべてについて取られた。図2は、 加速度計の代表的な配置と各階での加速度計の方向を示している。

DasyLab[®] Version 5.01.10 (DasyLab³ User's Guide, Lotech, 1998)は、フレームの強制振動と周囲振動を記録する ために使用されたプログラムの一つであった。コンピュータ・プログラムARTeMIS³ Extractor Version 2.0 (Structural Vibration Solution ApS(http://www.svibs.com))は、構造物の固有振動数とモード・シェープを同定す るために使用された。

データは、ARTeMISに組み込まれたFDD(Frequency Domain Decomposition)(周波数領域解析)と SSI(Stochastic Subspace Identification)(時間領域解析) の両方を使って解析された。

試験の説明

振動の測定は10ケースの試験構成で、2000年6月19 日~21日に行われた。すべての試験構成は、シェー カーによって発生させられる最大出力とその1/2 出力レベルの強制振動で行われた。強制振動試験に 加えて、各ケースに対して周囲振動試験も行われた。 各ケースにおける損傷は、ブレースを除去するか、 または梁-柱のボルト結合を解放することによって 引き起こされた。

図2 スチール・フレーム上の加速度計の代表的な位置と方向

ケース I:

最初のケースに対するスチール・フレーム構造物の構成は非損傷構造物であった。非損傷スチール・フレー ムが周囲振動に対して測定され、強制振動については最大出力および1/2 出力強制振動で測定された。

ケースⅡ:

スチール・フレーム構造物に質量非対称を取り入れるために、4つのスチール板が1階に、2つのスチール 板が2階にそれぞれ加えられた。1階に加えられた各スチール板は、0.25 kNの重量で、平均寸法35×57 mm であった。2階に加えられた各スチール板は、重量が0.25 kNで、寸法も上記のものとほぼ同じであった。 付加された質量は2階の質量の2.8%、1階の質量の5.6%である。これらの荷重はフレームの南側の端に加 えられ、その階にある大きなスチール板と一直線になるように並べられた。

ケースⅢ:

損傷は、フレームの北西隅からブレースを1本除去することによってフレームに引き起こされた。除去した ブレースは、柱のスチール・ベースと1階に取り付けられていたもので、図3に番号1で示されている。

ケースⅣ:

次の損傷ケースでは、第2のブレースが除去された。このブレースは、2階と3階の間の北西側間口から取 り除かれた。この取り除かれたブレースは、図3の番号2で示されている。

ケースV:

3番目の損傷状態は、前の除去に加えて、1階の北西隅の梁-柱接合を切り離すことによりフレームに発生 した。切り離された接合部は、図3の番号3で示されている。

ケースVI:

4番目のケースは、除去されたブレースをすべて元に戻し、前のケースで切り離された継ぎ手部分が再び取 り付けられた。構造物は損傷なしで、ブレース要素は何もなしで測定された。

ケース**Ⅲ**:

損傷は、ケースVで切り離された同一の梁上に発生した。1階の北西隅の梁と柱の接合が切り離された。この場所は、図3のポイント3として表示されている。

ケース 1:

ケースⅦの損傷に加えて、1階の北側の梁-柱接合が部分的に緩みを生じた。これは、ケースⅦで作られた 損傷の次の間口で生じた。緩んだ継ぎ手は図3の番号4で示されている。

ケースIX:

すべての接合が、「修理」して元の状態にするために再びしっかりと取り付けられた。フレームはケースVIと同じ構成になった。

ケースXとケースIXは、周囲振動試験と強制振動試験において再試験能力を制御するために再度行われた。

固有振動数とモード・シェープ

横固有振動数と捩り固有振動数、およびモード・シェープが、集録された14の周囲振動測定データを使って 推定された。モード・シェープは、一般に東西方向にうまく定義された。南北方向には、高いモードほど明 確に同定することが難しかった。

上記の測定値の周波数領域分解(frequency domain decomposition)から、構造物の平均化され正規化された特異値の大きさが、構造物の固有振動数を同定するために、ARTeMISを使って計算された。データが2という係数によって縮小され、周波数の分解能は1024の周波数ラインに設定された。

得られた周囲振動の記録は、参照センサーと他のす べてのセンサーの間の伝達関数、コヒーレンスおよ び位相位を決定するために使用された。この情報は、 FDD内の各ピークが固有振動数に対応するものか、 あるいはその周波数での振動の実稼動モードに対応 するかどうかを確かめるために使われた。表1は、 異なるケースにおけるフレームの固有振動数である ことが決定した周波数(および周期)を示す。

フレームの振動の固有モードであることが決定した モード・シェープの一つが図4に示されている。モ ード・シェープは3つのビュー:アイソメトリック・ ビュー(左上)、エレベーション・ビュー(右上と 左下)、およびプラン・ビュー(右下)で示されて いる。

前述のような強制振動試験が電磁式シェーカーを使って行われた。運動の入力信号はランダム振動(本 質的にはホワイト・ノイズ)であり、それは未知の 変数と仮定されているので、前に周囲振動試験に対 して行ったものと同じ解析が強制振動試験に対して 行われた。発生した振動における制限から、1Hz を 選んだスチール・フレームの固有振動数の内容はう まく定義されなかった。

フレーム振動の固有モードであることが決定したモ ード・シェープは、周囲振動試験によって得られた ものと同じものであった。解析の結果が表1にまと められている。

図3 異なるケースにおいてスケール・フレームに発生し た損傷

図4 ケース I から V に対する1 次モードのビュー

損傷探知と相関分析

過去数十年間に、構造物の動特性の変化に基づく非破壊損傷評価(NDE)の分野において、非常に多くの研 究が行われた。今日までに開発されたNDE手法の各々は、それらのパフォーマンスにしたがって4つのレベ ルの一つに分類される。(参考文献[3])

- 1. レベル I 損傷が発生したかどうかを確認する手法
- 2. レベルⅡ――損傷が発生したかどうかを確認し、同時に損傷の場所を決定する手法
- 3. レベルⅢ——損傷が発生したかどうかを確認し、同時に損傷の場所を決定し、損傷の程度をできるだけ 推定する手法
- 4. レベル**Ⅳ**−−損傷が発生したかどうかを確認し、同時に損傷の場所を決定し、損傷の程度を推定する。 そして構造物に対するその損傷の影響を評価する手法

レベルⅡの非破壊損傷評価手法が、周囲振動試験で得られた結果を使ったこの研究において実行された。

フレームに作られる損傷を探知するために、有限要素プログラムが構造物をモデル化するために使用された。 この目的のためにFEMtools Version 2.0 (Dynamic Design Solutions n.v. (DDS) (http://www.femtools.com)が使用 された。FEMtoolsにおいてテストと解析を統合することの主な目的の一つは、数値的に得られたデータと

実験的に得られたデータを比較することである。相関分析は、2つのデータの集合:通常は解析データベースと実験データベースのデータを比較するために、FEMtools において利用できる相関手法の一つである。

位置相関、シェープ相関、シェープ・ペアリング、FRFペアリング、FRF 相関関数、相関係数の計算のよう な解析オプションが、FEMtoolsにおいて使用できる。

opow 250	Free	q. from	Ambier	nt Vibra	tion	Frequency from Force Vibration Testing										Sec. 2. Commences
	0.261	Te	sting (Hz)	19406.) ₁	Full Amplitude Level (Hz)					Half Amplitude Level (Hz)					Description
	1	- 11	ш	IV	V	1	11	III	IV	V	1	11	111	IV	v	
1	4.69	4.69	4.59	4.49	4.40	4.64	4.64	4.59	4.44	4.40	4.69	4.69	4.59	4.49	4.44	First N/S Mode (1NS)
2	4.98	4.98	4.88	4.88	4.88	4.93	4.93	4.83	4.83	4.88	4.93	4.93	4.83	4.83	4.88	First E/W Mode (1EW)
3	10.35	10.35	10.16	9.77	9.47	10.35	9.86	9.81	9.62	.9.57	10.30	10.30	9.86	9.62	9.62	First Tanazariai (TT)
4	12.70	12.70	12.50	12.21	11.91	12.11	12.11	12.11	11.67	11.67	12.55	12.35	12.55	11.91	11.91	Second N/S Mode (2NS
5	15.04	15.04	15.04	15.04	15:04	14.84	12	680	13.72	13,72	14.99	14.99	14.84	14.40	13.96	Second E/W Mode (2EV
6	23.73	23.73	23.73	23.73	23.73	40	23.34	22.85	22.66	22.66	23.54	23.34	23.34	23.10	22.85	Third EW Media (XEW)
7	24.32	1. A	24.32	24.22	24.22	- 145	24.22	24.02	24.02	24.02	-	24.27	24.22	24.02	23.97	Fourth EW Mode (4EW
8	34,18	34.18	34.18	33.89	33,79	34.08	32.08	31.79	31.79	31.79	34.52	34.52	34,52	34.52	34.28	Fifth EW Mode (SEW)
9	39.94	39.94	39.94	39.94	39.94	+	×	39.79	39.55	39.31	40.23	40.23	40.23	39.79	39.31	Third N/S Mode coupler with Torskon (2EW + T)
Case	VI	VII	VIII	IX.	X	VI	VII	VIII	IX	X	VI	VII	VIII	IX	X	
1	1.66	1,66	1.66	1.66	1.66	-		9¥			÷	- ¥		-		First N/S Mode (1NS)
2	2.83	2.83	2.83	2.83	2.83	1	-	1.0	1.00		2.83	2.83	2.50	2.83	2.88	First East West Mode

表1 全ケースに対する周囲振動とハーフ/フル振幅レベルの強制振動の40 Hz 以下で決定されたモード

- 1	24.32	1.0	24.32	24.22	24.22	199	24.22	24.02	24.02	29.02	-	29.21	29.22	24.02	23.97	Fourth E/W More (4EW)
8	34.18	34.18	34.18	33.89	33,79	34.08	32.08	31.79	31.79	31.79	34.52	34.52	34,52	34.52	34.28	Pith EW Mode (ADW)
9	39.94	39.94	39.94	39.94	39.94	+	\times	39.79	39.55	39.31	40.23	40.23	40.23	39.79	39.31	Third N/S Mode coupled with Tonkon (2EW + T)
Case	VI	VII	VIII	IX.	X	VI	VII	VIII	IX	X	VI	VII	VIII	IX	X	
1	1,66	1.66	1.66	1.66	1.66	-		÷.			÷	- (¥.		-		First Nils Mode (1NS)
2	2.83	2.83	2.83	2.83	2.83		3	10		10	2.83	2.83	2.50	2.83	2.88	First East West Mode (1EW)
3	3.32	3.32	3.32	- F	3.32	2.83	2.83	2.69	2.83	2.88			03÷	5.00	- F.,	First Tansana (11)
4	5.57	5.57	5.57	5.57	5.57						5.57	5.57	5.57	5.62	5.66	Beconst N/S Mode (2NS)
5	9.08	9.08	9.06	9.08	9.08	5.57	5.57	5.57	5.57	5.62	9.28	9.28	9.13	9.33	9.38	Second ERV Mode (2EW)
6	10.35	10.35	10.35	10.35	10.35	9.18	9.18	8.94	9.23	9.33	10.30	10.30	10.25	10.30	10.45	Excent Tenional (21)
7	10.84	10.84	10.84	10.84	10.84	10.25	10.25	10.06	10.25	10.25	10.79	10.74	10.74	10.79	10.79	Thire N/S Mode (345)
B	15.04	15.04	15.04	15.04	15.04	10.74	10.74	10.55	10.74	10.74	15.77	15.77	15.77	15.77	15.82	Third Tursional (31)
9	22.17	22.17	22.17	22.17	22.17	15.53	15.53	14.84	15.58	15.58	22.17	22.17	22.17	22.17	22.17	Third EW/Mode (REW)
10	25.39	25.39	25.39	25.39	25.39	23.10	23.10	23.10	23.10	23.10	25.15	25,15	25.15	25.15	25.15	Fourth EAV Mode (#EIV)

ベンチマークとしての有限要素モデル

スチール・フレームに対するベンチマーク(評価水準)を生成する目的で、FEMtoolsを使って「非損傷」フレームの有限要素モデルが作成された。構造物は梁ー柱要素でモデル化された。梁ー柱の接合は100%の剛接合ではないので、フレームの接合はVentura et al., 1997(参考文献[4])で発表された論文に基づいてモデル化された。有限要素モデルにおける軸要素として使用されるブレースに対しては、慣性モーメントはゼロで、断面積だけが考慮された。有限要素モデルの質量をモデル化するために、集中質量の方法が用いられた。

固有振動数を求めるために、有限要素モデルが解析された。その結果は、テスト・データの固有振動数との 違いを示している。解析された有限要素の固有振動数と実験結果との違いは、不正確なモデリング、製作誤 差、緩慢な接合、質量分布における誤差やボルトの締め過ぎによるプレストレスを生じたブレース要素にお ける誤差のような、種々のパラメータに起因している。

最適有限要素モデルを作成するために、この仮の(予備的な)有限要素モデルは、ケース I とVIの実験結果 を用いた相関によってアップデートされた。相関は、部材や質量の特性のような、選択されたパラメータに ついて行われた。相関分析に対して変更できる部材特性は慣性モーメント(I)、断面積(A)、弾性ヤング 率および接合剛性であった。用意された有限要素モデルとテストされたモデルとの相関を評価するために、 FEMtoolsのMAC、FRFペアリング、およびシェープ・ペアリングのオプションが利用された。アップデート された有限要素モデルは、損傷探知のための損傷モデルとの比較のためのベンチマークとして使用された。

損傷探知

損傷を同定するために、損傷ケースから得られた実験結果、および損傷に関連のある部材特性の顕著な変化 を用いて、有限要素モデルがアップデートされた。損傷が発生したケースの実験結果による有限要素モデル のアップデーティング・プロセスにおいて、次のステップが適用された。

図5 ベンチマーク用有限要素モデルに対するMAC

パラメータ選択:実施された感度解析に基づいて、いくつかの異なるパラメータの不確実性がアップデーテ ィング・プロセスのために選ばれた。これらのパラメータには、スチールの弾性ヤング率、梁と柱の部材に 関する慣性モーメント、およびブレースの断面積が含まれている。いかなる質量の不確実性も重要でないと 判断されたので、損傷探知のためのアップデーティング・プロセスにおける不確実性パラメータとして、質 量は定義されなかった。部材特性の場合、不確実性は遥かに大きく、したがってパラメータは変化すること が許された。構造要素の異なるグループに対するこれらのパラメータの独立した変動を許すことにより、材 料と部材の特性に対する、モデルにおける感度を推定することが可能であり、構造物の動的挙動全体にこれ らがどのように影響するかを推定することが可能であった。

慣性モーメント、そしてその結果として、梁と柱の合計の剛性は、スチール・フレームにおける最も不確実 なパラメータの一つである。Iの値は高度に不確実で、柱接合に対する梁において感度が高い。ブレースに 対する断面積Aは、損傷のケースを考慮するための別の高感度パラメータである。

モデル・アップデーティング:この目的は、参照相関係数が最小になるように選択パラメータの値を調節す ることである。感度ベースのパラメータ推定において、モード特性と構造パラメータの間の関数関係は、線 形項に限られたTaylor 級数展開の項で表すことができ、次のように書くことができる。(参考文献[5])

$$\{Re\} = \{Ra\} + [S](\{Pu\} - \{Po\})$$
(1)

または

$$\{\Delta R\} = [S]\{\Delta P\}$$

ただし、

{Re}:参照用の系の応答が入ったベクトル(実験データ)

{Ra}:パラメータ値の与えられた状態{Po}に対する、予測された系の応答が入ったベクトル

(2)

- {Pu} : アップデートされたパラメータ値が入ったベクトル
- [S] :感度マトリックス

応答間の相関とMAC 値の計算は、14個のポイント(階毎に3 点と4つの異なるレベル + ベース・レベル における2 点)において行われた。損傷した構造物の実験結果を用いて、FE モデルとの相関とFE モデルの アップデーティングが、7つのモードを使って行われた。

損傷の評価と査定:パラメータにおける変化が綿密に検討された。構造損傷は、材料と部材の特性を減らす ことをベースにして査定された。改善された有限要素モデルにおける部材特性が、損傷したケースのアップ デートされたモデルと比較された。

図6~9は、損傷したケースのアップデートされたモデルを示している。特性における最大の減少の部材が、 これらの図の中で印を付けて示されている。図6では、探知された損傷が1階の東西方向のブレース断面に 存在していた。しかし、損傷した要素が決定されない間、近似的な場所と要素タイプが実際の損傷ケースと よく一致していた。 図8と9に示された損傷は、梁要素と接合要素において探知された。発生した損傷は重要なものではないの で、多くのパラメータ(柱の特性のような)は、ベンチマーク・モデルのモデル・アップデーティングの間 ずっと変化を許されなかった。図8~9に示されているように、実際に損傷を持つ部材は直接確認されなか った。しかし、確認されたものは損傷の見込みが最も高い構造物の一部である。

結論

テスト・スチール・フレームの周囲振動 データ解析は、損傷ケースI~Vに対す る9個のモードとケースVI~Xに対す る10個のモードを同定することが重要 であった。基本的な南北方向の周波数 は、ケースI~Vに対しては4.688~ 4.395 Hzと確認された。

周囲振動解析は、明確でよく定義された モードを、特に低次のモードにおいて示 した。強制振動によって行われた試験の 結果を比較するとき、高い減衰ノイズが 観測された。しかし、モード全体にわた って一貫した相関が存在する。

図6 ケースⅢに対して探知された損傷で、グランド階の北側のブレース において決定された。

検討された5つの異なる損傷ケースの中で、4つのケースが満足に予測された。うまく同定されなかった損 傷のケースに対して、発生した損傷が構造物のモード特性における顕著な変化を生み出すのに十分に重要で ないことが分かった。そして、感度解析は損傷の存在の信頼できる確認を与えることができないことが分か った。

発生した損傷は、結果に重要な影響を与える。したがって、いくつかの特定のパラメータが考慮に入れられたら、結果同士のより高い一致が達成されたであろう。これらのパラメータは、次の通りである。

- 1. より多くの損傷ケース:損傷の影響をうまく取り入れるために、もっと多くの損傷したケースを作り出し、かつもっと厳格なものであるべきである。
- 損傷のタイプ:損傷の発生を構造物のさまざまな部分で行ってみるべきである。周囲振動試験における 重いスチール板は、非常に強いスラブの効果を取り入れることができ、したがってそれは、作り出され た損傷がこの要素にもまた影響を与えたことを示唆している。
- 3. 非対称性:非対称性が導入されると、構造物の捩り挙動における無視できない変化を作り出すのに十分 な負荷を与えなければならない。

損傷探知は、7つのモードのみに基づいていた。もっと多くののモードが考慮されたなら、結果はもっと正 確になったであろう。

図7 ケースIVに対して探知された損傷で、2階の西側のブレースにおいて決定された。

図8 ケースVに対して探知された損傷で、1階の北側の梁において決定された。

図9 ケースWIIに対して探知された損傷で、1階の接合部において決定された。

- Black, C.J., and Ventura, C.E., Blind Test on Damage Detection of a Steel frame Structure, 16th International Modal Analysis Conference (IMAC XVI), Santa Barbara, CA, February 2-5, Proceedings, pp. 623-629, 1998.
- [2]]Kharrazi, M.H.K., experimental Benchmark Problem in Structural Health Monitoring Results of Ambient Vibration Studies, Direct Studies Report, University of British Columbia, 48 p, 2000.
- [3] Park,S., Stubbs, N. and Bolton, R.W.Damage Detection on a Steel Frame Using Simulated Modal Data, 16th International Modal Analysis Conference (IMAC XVI), Santa Barbara California, February 2-5, Proceedings, pp.612-622, 1998.
- [4] Ventura, C.E. et al.Modal Properties of a Steel Frame Used for Seismic Evaluation Studies, XV International Modal Analysis Conf., Orlando, Florida.Vol. 2, pp.1885-1891, 1997.
- [5] FEMtools³ Ver. 2.0, FEMtools Theoretical Manual, Dynamic Design Solutions n.v., (www.femtools.com) leuven, Belgium, 58 p., April 2000.